$$e^{a+b} = e^{a} \times e^{b}$$

$$AX = B$$

$$i \Rightarrow A^{-1}AX = A^{-1}Bi \Rightarrow X = A^{-1}Bi$$
To find the inverse change
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ to } \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
Then
$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

To find the inverse on a calculator

OPTN Mat F2 Mat F1 SHIFT χ^{-1}) **On calculator :** OPTN \rightarrow MAT F2 \rightarrow DET F3 Determinant of order 2 - Pg 822 stew

|a|b =ad-bc $\begin{vmatrix} c & d \end{vmatrix}$

Determinant of order 3 - Pg 822 stew

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Determining whether a matrix has an inverse Heuv pg 67 If $Det(A) \neq 0$ is a non singular Matrix and inverse exists. Figen Values - Example

$$B = \begin{bmatrix} 3 & 1 \\ 4 & 0 \end{bmatrix}$$

$$det (b - \lambda I)$$
$$det \begin{bmatrix} 3 - \lambda & 1 \\ 4 & 0 - \lambda \end{bmatrix}$$
$$= (3 - \lambda)(-\lambda) - 4$$
$$= \lambda^2 - 3\lambda - 4$$
$$= (\lambda + 4) (\lambda - 1)$$

 $\begin{bmatrix} -1 & 1 \\ 4 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Eigenvalues $= \lambda = 4, \lambda = -1$ Then to get EigenVectors for each Eigenvalue :-Insert $\lambda = 4$ into equation above $\begin{bmatrix} 3-4 & 1 \\ 4 & 0-4 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 4 & -4 \end{bmatrix}$

Solve for $(b - \lambda I)=0$

Augment the matrix

$$\begin{pmatrix} -1 & 1 & | 0 \\ 4 & -4 & | 0 \end{pmatrix}$$
Do row operations on R₂ \rightarrow R₂ + 4R₁ = 0
 $-1x + 1y = 0 \rightarrow x = y$
Set y = t
So EigenVector for $\lambda = 4$ is $t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
(1.1)

Then substitute $\lambda = -1$ into equation above. Skip to (1.1) to get $4 \ 1 0$ the Augmented =

|4 | 1 | 0Do row operations on $R_2 \rightarrow R_2 - R_1 = 0$ $4x + 1y = 0 \rightarrow x = -1/4y$ Set y = t $t\begin{bmatrix} -\frac{1}{4}\\ 1 \end{bmatrix}$ or multiple of is $t\begin{bmatrix} -1\\ 4 \end{bmatrix}$ So EigenVector for $\lambda = 4$ is

To find EigenValues of 3x3 matrix

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$-\lambda^{3} + (a + e + i)\lambda^{2} - \left(\begin{vmatrix} e & f \\ h & i \end{vmatrix} + \begin{vmatrix} a & c \\ g & i \end{vmatrix} + \begin{vmatrix} a & b \\ d & e \end{vmatrix} \right)\lambda + |A|$$

Quadratic Formula $f(x) = ax^2 + bx + c$ Quadratic solution $x = \frac{-b \pm \sqrt{b^2 - 4 ac}}{2}$ Can have 0,1 or 2 solutions Wed, 13 April 2011 Page 1/3 MAS161

If the $b^2 - 4ac$ section is -ve =no solution 0 = one solution

+ve = two solutions

Vector definition between 2 points

 $\vec{v} = (x_2, y_2, z_2) - (x_1, y_1, z_1)$ Equation for a line in **3D** pg 830 Stew

 $\vec{r} = \vec{r_0} + t \vec{v}$ where

 $\vec{r_0}$ denotes a point on the line.

t Denotes a variable to trace out the line.

v Denotes the above vector definition between 2 points Distance formula in 3 dimensions - pg 803 Stew

$$|P_1 P_2| = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2 + (Z_2 - Z_1)^2}$$

Unit Vector
$$|P_1 P_2|$$

$$\frac{|Y_1|Y_2|}{\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2 + (Z_2 - Z_1)^2}}$$

Equation for a sphere - pg 804 Stew $(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}$ Dot Product -pg 815 Stew $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$

The resultant is a real number (ie scalar) Cross Product pg822 Stew

The resultant is a vector which is perpendicular to both the other vectors. $-h - a_{1} b_{1}$ a h - a h a h

$$a \times b = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1$$

Angle between the vectors a and b – pg 816 Stew

 $a \cdot b = |a| |b| \cos \theta$

Perpendicular (orthogonal) angles pg 817 Stew

If $a \cdot b = 0$ then the two lines are perpendicular.

Orthogonal - 2 lines are orthogonal if they are perpendicular.

The vector $a \times b$ is orthogonal to both a and b.

Parallel vectors 2 vectors are parallel if the cross product a x b = 0 Area of a parallelogram The length of a cross product a x b is equal to the area of the parallelogram.

Equation of a plane pg 834Stew
$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

where **n** = (a,b,c) = normal vector = cross product of 2 vectors on plane and

 $r_0 = (x_0, y_0, z_0)$ which is a point on the plane.

Rolle's Theorem There is a value c in (a,b) such that

$$f'(c) = \left[\frac{f(b) - f(a)}{b - a}\right]$$

Sequences

To find if a sequence is convergant or divergent :

$$a_n = \left(\frac{1+n-3n^2}{7+4n^2}\right)$$

1. Divide by the highest power of n. ie n^2 and take the limit

$$\lim_{n \to \infty} a = \left(\frac{\frac{1}{n^2} + \frac{1}{n} - 3}{\frac{7}{n^2} + 4}\right) \to \lim_{n \to \infty} a = \left(\frac{0 + 0 - 3}{0 + 4}\right)$$
$$\to \lim_{n \to \infty} a = \left(\frac{-3}{4}\right) \text{ Check this rule with Ha?}$$

Series (are a sum of sequences or functions) Tests of Convergence Ha's hand written notes 6.3

- 1. Integral Test (Also used to estimate the sum of a series)
- Basically just do a definite integral for the series.

2. Comparison Test

3. Limit Comparison Test

4. Alternating Series Test

5. Ratio Test. Ha's typed notes 'Seq. & Series' pg 52

literally put $a_{(n+1)}$ over a_n and algebraically solve it.

$$\lim_{n \to \infty} \left| \frac{a_{(n+1)}}{a_n} \right| < 1$$

Absolutely convergent

Eg:
$$\lim_{x \to 2} a = \left(\frac{x^2 - 4}{x - 2}\right) = \left(\frac{0}{0}\right)$$

To resolve this we take the differential of both the numerator and the denominator.

$$\lim_{x \to 2} a = \left(\frac{2x}{1}\right) = 4$$

Eulers Methd pg35 Ha's notes -ODE's

$$\frac{dy}{dt} \approx \frac{y_{k+1} - y_k}{\Delta t} = y_k t_k, k = 0, 1, 2, 3, \dots$$

Rearrange to $y_{k+1} = y_k + \Delta t (y_k k \Delta t)$

Newtons Method pg269 StewPlot the graph and find a point close to the intersect to get a starting point which will be x1

2. Rearrange to the standard form. le $x^6 - 2 = 0$

3. Apply
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

4. Apply over and over to get a series of numbers $x_1, x_2, x_3, x_4, \dots$ When 2 of these terms are the same to 8dp then you have your answer.

P572 Separable Differential Equations – Means to be able to get one variable on one side like you normally try to do in an algebraic equation.

4. Create the common denominator for additions.

$$x^{2}+2x-1=A(2x-1)(x+2)+B(x)(x+2)+C(x)(2x-1)$$
Then mash it around to look like :

$$x^{2}+2x-1=(2A+B+2C)x^{2}+(3A+2B-C)x-2A$$
From here you have 3 simultaneous eqations

$$2A+B+2C=1$$

$$3A+2B-C=2$$

$$-2A = -1$$

5. From here we have 2 different ways we can solve this.

a. By using an inverse matrix solution or

or C. T Rule 7 Product Rule for integration - Integration by parts :

$$\int \mathbf{u} \, \mathrm{d} \, \mathbf{v} = \mathbf{u} \mathbf{v} - \int \mathbf{v} \, \mathrm{d} \, \mathbf{u} \quad \int_{a}^{b} u \, dv = u v_{a}^{b} - \int_{a}^{b} v \, du$$

Example :

$$\begin{split} I_{(x)} &= \int x e^x d\, x \quad \rightarrow \quad I_{(x)} \,=\, +(x) \, e^x - (1) \, e^x \\ \text{Example of complex manipulation :} \end{split}$$

A,B

 $^{3} = -2 + 2i$

$$z^{3} = 2\sqrt{2} \arctan > -2/2 \rightarrow \text{change to } r e^{\theta i} \text{ form}$$

$$z^{3} = 2\sqrt{2} e^{\arctan - 1 + 2k\pi} \quad \text{where } k = 0, 1, 2, 3 \dots$$

$$z_{1} = (2\sqrt{2} e^{\arctan - 1 + 2k\pi})^{\frac{1}{3}}$$

$$z_{2} = (2\sqrt{2} e^{\arctan - 1 + 2k\pi})^{\frac{2}{3}}$$

$$z_{3} = (2\sqrt{2} e^{\arctan - 1 + 2k\pi})^{\frac{3}{3}}$$

Row reducing rules

1. Can add and subtract rows from each other.

- 2. Can multiply or divide a row by a constant.
- 3. Can swap rows.

To check for Saddle Point - Take det. At each point of extrema

$$Det(a,b) \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx} f_{yy} - f_{xy}^{2} \text{ If Det(a,b) < 0 Saddle}$$

Completing the Square Best to look at the examples in Pauls notes here but this is a brief description of the format.

 $x^2 + bx = x$ is the general format of a quadratic. Add $\left(\frac{b}{2}\right)^2$ to get a factorable quadratic. $x^2 + bx + \left(\frac{b}{2}\right)^2$

Angles using a 3,4,5 triangle

Degrees	0 °	30 °	45 °	60 °	90°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Sin θ	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
Cos θ	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$
Tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	DN 0

Compare what you have to the formula sheet attached to the exam

thus G(y)=F(x) where the G an F represent the anti-derivatives of g and f.

When finding Extrema of multi-variable functions like single variable

- set each derivative to =0
- factor out each variable

```
- find all values of each variable for when each derivative =0
- treat as simultaneous equations to make easier.
```

Possibles to add to rule sheet : Ex06 Q5a and b

Ex 06 Question 6 Taylor series and convergence rules.

Determinant and linear independence

Inverse of a 2*2 matrix - Larger Matricis done by calculator 0 1

The purpose of an inverse matrix is to cancel itself out 1

0 when solving an equation of matrices **Calculator** : OPTN \rightarrow F2 MAT \rightarrow F6 \rightarrow F1 Iden \rightarrow size of matrix \rightarrow F6 \rightarrow F1 MAT \rightarrow ALPHA \rightarrow choose letter.

Matrix written as (Row, Column) Eg. Size of a Multiplication of matrices (3 X 2) and (2 x 4) The columns in A must equal the rows in B So the above can multiply and the result is a (3 X 4) matrix.

For
$$A^{-1}=0$$
 the ad – bc section above must = 0

Matrix example

3 1	0 -2	1 0	$\begin{vmatrix} -1\\0\\4 \end{vmatrix}$	2 -1 2	$= \begin{bmatrix} 1\\ -1 \end{bmatrix}$	8 4
--------	---------	--------	--	--------------	--	--------

Multiply top row of A by first column of B. Then by second column of B. Then bottom row of A by first Column of B. Then second column of B.

Ha's hand written notes systems of linear equations ha hand written notes.pdf

```
We then call x an eigenvector of A and \lambda an eigenvalue of A.
  (\lambda I - A) x = 0 pg 315 pauls.
Will need long division of polynomials - Pauls notes
 Alg Complete.pdf pg245
Definition 4 The set of all solutions to (\lambda I - A) x = 0 is called the
 eigenspace of A corresponding to \lambda.
```

Quadratic Second Rule : pg 161L - 10

eg: $x^2 - 6x + 15$ $x^{2}+2ab+b^{2}$ where a=x b = -3 Will have left over 15 - 9 = 6Therefore $(x-3)^2+6$ Maybe put examples of 2003q5 into cheat sheet???? $\gamma^3 = 1 + \dot{\nu}$ 23= V2 6 $Z = \left(\sqrt{2} < \frac{\pi}{4}\right)$ Also expressed as (Z= 22e (7+2KT) 3 Where k=0,1,2...n Convert back to a tib Z= 2 e = 1 W. Cos 2百人苦 1 414 = 12 = 2= (cos 提+ish 法) + 1511 12 (私), = 2= (cos 臣 coles 2 5 605 12 = 1.084 12 \$ sin The = 10.2905 ⇒ Z= 1.084 +, 10.2905 5 3j+10j+6 → Z= 34 (1+13j So 3 answers are (for 3 different poles) 2t (cos II + 21 + i sin II + 21) (A2) A3) 2(27

Identity = I =